Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(8): e37015, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394536

RESUMO

BACKGROUND: Peptidyl (protein) arginine deiminases (PADs) provide the transformation of peptidyl arginine to peptidyl citrulline in the presence of calcium with posttranslational modification. The dysregulated PAD activity plays an important role on too many diseases including also the cancer. In this study, it has been aimed to determine the potential cytotoxic and apoptotic activity of chlorine-amidine (Cl-amidine) which is a PAD inhibitor and whose effectiveness has been shown in vitro and in vivo studies recently on human glioblastoma cell line Uppsala 87 malignant glioma (U-87 MG) forming an in vitro model for the glioblastoma multiforme (GBM) which is the most aggressive and has the highest mortality among the brain tumors. METHODS: In the study, the antiproliferative and apoptotic effects of Cl-amidine on GBM cancer model were investigated. The antiproliferative effects of Cl-amidine on U-87 MG cells were determined by 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate method at the 24th and 48th hours. The apoptotic effects were analyzed by Annexin V and Propidium iodide staining, caspase-3 activation, and mitochondrial membrane polarization (5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide) methods in the flow cytometry. RESULTS: It has been determined that Cl-amidine exhibits notable antiproliferative properties on U-87 MG cell line in a time and concentration-dependent manner, as determined through the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate assay. Assessment of apoptotic effects via Annexin V and Propidium iodide staining and 5,5', 6,6'-tetrachloro-1,1', 3,3' tetraethyl benzimidazolyl carbocyanine iodide methods has revealed significant efficacy, particularly following a 24-hour exposure period. It has been observed that Cl-amidine induces apoptosis in cells by enhancing mitochondrial depolarization, independently of caspase-3 activation. Furthermore, regarding its impact on healthy cells, it has been demonstrated that Cl-amidine shows lower cytotoxic effects when compared to carmustine, an important therapeutic agent for glioblastoma. CONCLUSION: The findings of this study have shown that Cl-amidine exhibits significant potential as an anticancer agent in the treatment of GBM. This conclusion is based on its noteworthy antiproliferative and apoptotic effects observed in U-87 MG cells, as well as its reduced cytotoxicity toward healthy cells in comparison to existing treatments. We propose that the antineoplastic properties of Cl-amidine should be further investigated through a broader spectrum of cancer cell types. Moreover, we believe that investigating the synergistic interactions of Cl-amidine with single or combination therapies holds promise for the discovery of novel anticancer agents.


Assuntos
Antineoplásicos , Glioblastoma , Nitrofenóis , Ornitina/análogos & derivados , Humanos , Cloro , Glioblastoma/metabolismo , Anexina A5 , Benzeno , Carbocianinas/farmacologia , Caspase 3/metabolismo , Iodetos/metabolismo , Iodetos/farmacologia , Propídio , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Amidinas/farmacologia , Arginina/metabolismo , Apoptose
2.
Poult Sci ; 102(10): 102946, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542939

RESUMO

Zearalenone (ZEA) is produced mainly by fungi belonging to genus Fusarium in foods and feeds. Heterophil extracellular traps (HETs) are a novel defense mechanism of chicken innate immunity involving activated heterophils. However, the conditions and requirements for ZEA-triggered HET release remain unknown. In this study, immunostaining analysis demonstrated that ZEA-triggered extracellular fibers were composed of histone and elastase assembled on DNA skeleton, showing that ZEA can induce the formation of HETs. Further experiments indicated that ZEA-induced HET release was concentration-dependent (ranging from 20 to 80 µM ZEA) and time-dependent (ranging from 30 to 180 min). Moreover, in 80 µM ZEA-exposed chicken heterophils, reactive oxygen species (ROS) level, catalase (CAT), superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and glutathione (GSH) content were increased. Simultaneously, ZEA at 80 µM activated ERK and p38 MAPK signaling pathways by increasing the phosphorylation level of ERK and p38 proteins. Pharmacological inhibition assays revealed that blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, ERK, and p38 mitogen-activated protein kinase (MAPK) reduced ZEA-induced ROS levels but had no impact on HET formation. Furthermore, immunostaining analysis indicated that the heterophil underwent the formation of autophagosome based on being stained with LC3B. The pharmacological inhibition assays demonstrated that rapamycin-, wortmannin-, and 3-methyladenine (3-MA)-treatments modulated ZEA-triggered HET formation, indicating that heterophil autophagy played a key role in ZEA-induced HET formation. Further studies on energy metabolism showed that inhibition of lactate/glucose transport, hexokinase-2 (HK-2), fructose-2,6-biphosphatase 3 (PFKFB3) in glycolysis abated ZEA-induced HETs, implying that glycolysis was one of the factors influencing the ZEA-induced HET formation. Besides, inhibition of the peptidylarginine deiminase (PAD) enzyme and P2X1 significantly reduced the ZEA-induced HET formation. In conclusion, we demonstrated that ZEA-triggered HET formation, which was associated with glycolysis, autophagy, PAD enzyme, and P2X1 receptor activation, providing valuable insight into the negative effect of ZEA on chicken innate immunity.


Assuntos
Armadilhas Extracelulares , Zearalenona , Animais , Armadilhas Extracelulares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Galinhas/metabolismo , Zearalenona/toxicidade , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/farmacologia , Autofagia , Glicólise
3.
Asian Pac J Cancer Prev ; 23(9): 3215-3222, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36172687

RESUMO

BACKGROUND: Multidrug resistance (MDR) is a major cause of unsuccessful cancer treatment in which drugs are not effective. Therefore, it is necessary to identify the critical mechanisms of the development of MDR and target those with novel compounds. Accordingly, the current study is the first to investigate the combination effect and molecular mechanism of nitazoxanide (NTZ) and oxaliplatin (OXP) on LS174T/OXP-resistant cells. METHODS: The effect of NTZ on OXP cytotoxicity in LS174T and LS174T/OXP cell lines was evaluated by MTT assay. Changes in expression levels of MDR1, MRP1, CTNNB1, peptidylarginine deiminase (PAD)2, and PAD4 genes and proteins were evaluated by RT-qPCR and western blotting methods, respectively. Lastly, the apoptosis assay was performed by flow cytometer. RESULTS: OXP resistant and sensitive cells were identified based on the IC50 values (11567 nM vs. 1745 nM, p<0.05 for 24 h treatment; and 5161 nM vs. 882 nM, p<0.05 for 48 h incubation). The combination of NTZ and OXP for 48 h led to a reduction in IC50 values in resistant cells (2154 nM, p<0.05). The effect of NTZ plus OXP significantly decreased the expression of MDR1 (p<0.001), MRP1 (p<0.05), and CTNNB1 (p<0.001), while PAD2 and PAD4 expression was significantly increased (p<0.001). This combination therapy enhanced the percentage of the sub-G1 population (apoptosed) compared to other groups. CONCLUSION: The results showed that NTZ leads to notable upregulation of PAD2 and PAD4, which can disrupt the Wnt/ß-catenin signaling pathway and reverse the MDR by reducing MDR1 and MRP1 expression.


Assuntos
Neoplasias Colorretais , Via de Sinalização Wnt , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Humanos , Nitrocompostos , Oxaliplatina , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/farmacologia , Tiazóis
4.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260245

RESUMO

Microorganisms that create mixed-species biofilms in the human oral cavity include, among others, the opportunistic fungus Candida albicans and the key bacterial pathogen in periodontitis, Porphyromonas gingivalis. Both species use arsenals of virulence factors to invade the host organism and evade its immune system including peptidylarginine deiminase that citrullinates microbial and host proteins, altering their function. We assessed the effects of this modification on the interactions between the C. albicans cell surface and human plasminogen and kininogen, key components of plasma proteolytic cascades related to the maintenance of hemostasis and innate immunity. Mass spectrometry was used to identify protein citrullination, and microplate tests to quantify the binding of modified plasminogen and kininogen to C. albicans cells. Competitive radioreceptor assays tested the affinity of citrullinated kinins to their specific cellular receptors. The citrullination of surface-exposed fungal proteins reduced the level of unmodified plasminogen binding but did not affect unmodified kininogen binding. However, the modification of human proteins did not disrupt their adsorption to the unmodified fungal cells. In contrast, the citrullination of kinins exerted a significant impact on their interactions with cellular receptors reducing their affinity and thus affecting the role of kinin peptides in the development of inflammation.


Assuntos
Candida albicans/fisiologia , Proteínas Fúngicas/metabolismo , Cininogênios/metabolismo , Plasminogênio/metabolismo , Porphyromonas gingivalis/enzimologia , Desiminases de Arginina em Proteínas/farmacologia , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cromatografia Líquida , Citrulinação , Humanos , Imunidade Inata , Cininogênios/química , Ligação Proteica , Espectrometria de Massas em Tandem
5.
J Immunol Res ; 2019: 6587570, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944835

RESUMO

BACKGROUND: PADI4 has extensive expression in many tumors. This study applied PADI4 as a tumor marker to stimulate DC- (dendritic cell-) CIK (cytokine-induced killer), an immunotherapy approach. METHODS: A PADI4 expression plasmid was transfected into EC-originating ECA-109 cells. PADI4 gene was also inserted into a prokaryotic expression vector to produce recombinant protein. Lysate from PADI4-overexpressing cells or the purified recombinant PADI4 protein was used to load DCs, and the cells were then coincubated with CIK cells. DC and CIK cell phenotypes were determined using flow cytometry. The proliferation and viability of CIK cells were analyzed using trypan blue staining. The cytotoxic effect of DC-CIK cells on cultured ECA-109 cells was determined using CCK8 assays. Tumor-bearing mice were prepared by injection of ECA-109 cells. DC-CIK cells stimulated with lysate from PADI4-overexpressing cells or the PADI4 recombinant protein were injected into the tumor-bearing mice. The tumor growth was measured with magnetic resonance imaging (MRI). RESULTS: Following incubation with lysate from PADI4-overexpressing cells, the ratio of CD40+ DCs increased by 17.5%. Induction of CIK cells with PADI4-stimulated DCs elevated the cell proliferation by 53.2% and the ability of CIK cells to kill ECA-109 cells by 12.1%. DC-CIK cells stimulated with lysate from PADI4-overexpressing cells suppressed tumor volume by 18.6% in the tumor-bearing mice. The recombinant PADI4 protein showed a similar effect on CIK cell proliferation and cytotoxicity as that of the lysate from PADI4-overexpressing cells. Furthermore, the recombinant protein elevated the ratio of CD40+ DCs by 111.8%, CD80+ DCs by 6.3%, CD83+ DCs by 30.8%, and CD86+ DCs by 7.8%. Induction of CIK cells with rPADI4-stimulated DCs elevated the cell proliferation by 50.3% and the ability of CIK cells to kill ECA-109 cells by 14.7% and suppressed tumor volume by 35.1% in the animal model. CONCLUSION: This study demonstrates that stimulation of DC-CIK cells with PADI4 significantly suppressed tumor growth in tumor-bearing mice by promoting DC maturation, CIK cell proliferation, and cytotoxicity. PADI4 may be a potential tumor marker that could be used to improve the therapeutic efficiency of DC-CIK cells.


Assuntos
Células Matadoras Induzidas por Citocinas/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Neoplasias Esofágicas/terapia , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/farmacologia , Adulto , Animais , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Técnicas de Cocultura , Citotoxicidade Imunológica , Modelos Animais de Doenças , Neoplasias Esofágicas/imunologia , Feminino , Humanos , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína-Arginina Desiminase do Tipo 4
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA